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EVOLUTIONARY EQUATION FOR PERTURBATIONS IN A TWO-LAYER FILM FLOW 

O. Yu. Tsvelodub UDC 532.51 

We will examine the simultaneous motion of two films of immiscible liquids flowing under 
the influence of gravity. Such flows are encountered in certain types of extraction columns. 
The chosen coordinate system is shown in Fig. i. The film bounded by the solid wall will 
henceforth be designated as the first film, while the film having the free boundary will be 
referred to as the second film. The quantities pertaining to these films will be denoted by 
the subscripts 1 and 2, respectively. 

The equations which describe the motion of such a system permit a solution to be ob- 
tained with plane phase and free boundaries, regardless of the rates of flow of the liquids. 
Here, the profiles of longitudinal velocity are equal to 

g [2 (Hlo  + H2op2/p1 ) y - -  y:],  Ulo  - -  

(1) 
U2o = ~--~ [2HloH2o(~2/~l -  t) + H~o (~z/v~ - -  ~) + 2 (H~o+H2o) y_y2]. 

Here, v i and ~i are the kinematic and absolute viscosities; ~i is density; Hi0 is the thick- 
ness of the liquid film. 

However, even with low flow rates, the flow (i) may become wavelike due to instability. 
Using as scales characteristic values of the quantities pertaining to the first film - es- 
pecially the thickness Hi0 and the mean-flow-rate velocity U 0 - for nonwavy flow with the 
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Fig. i 

given flow rate q0, we write the equations of motion in dimensionless form for this case 
(with omission of the symbol denoting that the quantities have been made dimensionless) 

Ou 1 
ot 

OV~ O~ 1 O~' 1 
o--T + ut -~z + v~ oy 

OU 1 OI~ 1 
o-~ + -b~u = 0, 

au~ Ou~ Ou~ 

O~ 2 Ov 2 a~ 2 
o--/- + u2 ~ + v~ 3~  

Ou 2 o~ 2 
a--y + -b-F = O. 

+ 

k / p F r  + \ 0~" + 0 - ~ / v / R e ,  

The dynamic boundary conditions on the solid boundary (y = 0), phase boundary (y = 
hz(x, t)), and free boundary (y = h2(x, t)) can be written in a form similar to [i]: 

Ou i Oh i 
- - ( p ~ - - W e / R ~ ) ~ +  2 oz oz 

at y = 0 u z = 1; i ~ 0; 

a t  y = hi(x, t) ui = u2, v'l = v2, 

Oul O~'l I Oh1 ( Ou2 ahl Ou~ 0 ~  
ov -~x ) Fr/Re = - - P 2  ~ + 2 ox ax au ~z] ~tFr/I~e, 

- - 1  F r / R e  = p= + + p~ - -  We/R~ + kk ay + ~-z] ~ - -  " @ J L\ ay ax / -~z  - -  2 -~y] ~tFr]Re; 

at y = h2(x , t) 

where 

Oh2 ( Ozt2 Oh z Ou 2 Ou2] Oh 2 
- -  (p~ - -  c~We/R~) ~x  + 2 az ox @ ~-x] ~tFr/He = - -  Po -~-, 

[[ou, Or2) Oh2 Ov2] ~tVrfRe 
P2 - -  ~We/R~ + L\ Oy + ~-~] ~x - -  2 - ~ j  = Po, 

Re = qo/Vz; Fr = qo/gH~o; W e  = ~i/Pig[l~o. 

(2) 

(3) 

The below kinematic conditions are valid at the phase and free boundaries 

ahJOt + uiOhJOx ----- ~'l at g = hi; 

OhjOt + u2Oh2/Ox = v2 at g ----- h 2. 
(4) 
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Here, Re is the Reynolds number; Fr is the Froude number; We is the Weber number; p = p=/p~, 
o = o2/o~, v = v2/vl, p = p=/~z are relative values of density, surface tension, and kine- 
matic and absolute viscosity. 

Using (i), it is not hard to show that with the chosen scales for making quantities di- 
mensionless, the following relation is satisfied 

F r / R e  = t / 3 + p M 2 - - - ~ l / a .  

L i m i t i n g  o u r s e l v e s  t o  t h e  e x a m i n a t i o n  o f  l o n g w a v e  d i s t u r b a n c e s ,  we s e e k  t h e  s o l u t i o n  
o f  s y s t e m  ( 2 )  w i t h  c o n d i t i o n s  ( 3 - 4 )  i n  t h e  f o r m  o f  s e r i e s  i n  t h e  s m a l l  p a r a m e t e r  e = H10 /~  
( w h e r e  k r e p r e s e n t s  t h e  c h a r a c t e r i s t i c  a n d  l o n g i t u d i n a l  d i m e n s i o n  o f  t h e  d i s t u r b a n c e s ) .  F o r  
this, we follow [i] and introduce the new variables 

x ' ~  ex, y '  -~- y, T n--~ ent, n~-~ l ,  2. . .  

and functions 

u 1 = U~o -}- gu~', vl ~ e~-v'l, u S ~ Uzo + eu2', v.~ ~ s~v'~, 
/ t 

p ~ =  e p a ,  p ~ =  epe ,  h , - - l q - e h / ,  h , = h  + e h ~ '  

(h = i + H~o/Hao ). 

Ignoring terms on the order of ~2 
the phase and free boundaries to their 
hi', h 2' we arrive at the system (with 

and above and changing the boundary conditions for 
! ! 

undisturbed levels, for u1', vl , u 2 , v2', p~', P2', 
the primes omitted) 

(Oul 0~1 dOao I e OPl q_ t OZu~ 

o 
O*v 1 ~ O~tl Ov 1 

Fr Oy 

(0% 0% dU~o" ~ ~ o& ~, O~u~ 

t Op~ + ev O~v~ O. 
pFr Oy ~e  Og --'~-~- = 

Ou ~ Ov 2 
o-y + ~ = 0  

(5) 

with the following boundary conditions: 

at y----O 

at g'~i 

ul = vl ~ O; 

OW 1 dUlo  1 ( 0~ dU2o ~ 
e - ~  + dy I h i  + ul  = e ~ + dy ] th  + u2, v l = v.,, 

- -g r - ; .  , 

Pl  + e @~ h 1 + We~ 2 a2h~ - -  2e Fr Ov~ oy ox 2 Be oy p~ - -  2e ttFr Or2. 
- - - -  ~ Re Og ' 

at y = h  
Ou 2 02 u.2 

d2U~~ h2 + + e -  h., = O, 
' d y 2  -~g  Og'z - 

O~-h,, ttFr Ov.~ 
po + ~ h z -}- W e ( y 8 " ~ - -  2s Re  Oy Po" 

( 6 )  

Kinematic conditions (4) take the form 

Oh 1 Ott 1 Oh 1 dUlo Oh 1 Oh I Ov 1 

Oh z Oh 2 Oh 2 Oh 2 Ov~ 
oT 1 ~ s ~ + U ~ o ~ + e u ~ - b ~ = v 2 + e w h 2  at y=h.  

(7) 
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The terms of higher order with respect to s are left in (6), since the values of We are 
usually large for the thin films of many liquids. We will therefore suppose that the follow- 
ing relations are satisfied 

W e  e 2 N 1, W e e : a  ~ 1. 

Representing the solution of system (5) in the form of a series in 

u~ / / u m ' ~  

P+ ~=o ~ P m  V 
h~ \ h ~ }  

i = 1 , 2 ,  

and equating the coefficients with identical powers of e, we obtain the following from the 
equations for the zeroth order 

Or I yZ ar 2 y2 Or 3 
ulo = rag' Vlo --  ox 2 '  U2o = r2g + r3, V2o Ox 2 ~ g - -  r 4. ( 8 )  

The explicit form of the functions r i is given in the appendix. 

Inserting (8) into (7), we arrive at a system which in a first approximation describes 
the behavior of disturbances in a two-layer film flow: 

Ohio Ohao Ohio Ohio Ohio Ohio 
Ox---~ + a~ ~ + b I ~ = O, W "~- a2 ~ -}- b2 ~ = O. ( 9 )  

Here t ( d~U2o (l) 

a 2 = U2o (h) + 

(dU~o (f) 

d2Ulo (1)) it d2U2o (h). 
dy 2 ; ; bl = -- -~ dy2 ' 

d2U ~o (h) 
@,~ [(~t - -  1)/2 + (f  - -  ~) h - -  h~/2]; 

The general solution of system (9) is easily calculated: 

hlO = Hl1(~1) "~ H12(~i), h2o = H21(~I) + H22(~2), ~1 = x - -  clrl ,  ~.z = x - -  c ~  1 
(cl, ~ = [a I + a2 -4- ((al - -  az) z + 4b~b2)l/2]/2). 

It is clear that (9) has solutions in the form of steady traveling waves with the phase 
velocity c I or c 2. 

We obtain the following from (5) for the next order with respect to 

I a2ull 0Ul 0 aUl 0 dUlo I OPlo.~ Re ~g2,  
'Oz 1 + U l ~  + vl~ ~ Fr ax 

aUll OP]I I @11 t a%1o O, ~ + ~ - = 0 ,  
F r a y  ~" Re Og 2 

OU2o OU2o dU2 o 1 aP~o 'v a2u21 
"O'r I + U2~ -'}- Vz~ dg - -  pFr Ox + R-e Og z ' 

. ~u21 Or21 I OPz~ v a2v~o = 0 ,  ~ + ~ = 0 .  
pFr Og ' I've @2 

It is easy to find a solution of system (i0) that satisfies the boundary conditions 
which follow from (6) 
at y = 0 Ull = VII = 0; 
at y = 1 

(10) 
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auto dUlo Ou,, o dU ~o 
ov h~o + T v  hn + u .  = ~ h~ o + - ~  h~ + u2.  

d2Ulo h 0~11 / d2U., Ozt27il + 

^2 
OPl~ t, We82 o h~ 2Fr OUl~ 2~Fr Ov.2o" 

Pn + ~ ' ~ o  + 0 7  H~ og = Pz~ P,e og ' 

aty=h 

.~ O2h~l ~tFr OV2o Ou2~ 0P2~ ~ We,re" o 7  2 = O, dZV2~ h2~ + = 0, P2~ + ~ ' ~ 2 o  + 
dv~ ~ Re ov 

However, this solution is not presented here due to its awkwardness. If we insert it into 
the below relations, obtained from kinematic conditions for the given order with respect to 

~hlo O~hll 0hll dUlo Ohio Ohio aVio 
a~ 2 + ~ + Uz~ ~ + ~ hlo ~ - z  + Ulo ~ = vll + - ~  hlo at  g = !,  

0h2~ 6h91 0h21 0h2~ Ou~-~ h~o at g = h, 
a~ 2 + ~ + U ~ o ~ + U 2 o ~ = V 2 1 + ~  . 

after some simple but lengthy calculations we arrive at the system 

Ohl 1 Oh11 Oh~ 1 
~"--~ + al "Tf'x + b~ ~ = /~  (hxo, h2o), 

(11)  
Oh.z I Oh21 Ohll 
o~---- 7 + a2 ~ + b., - ~  = ]2 (hlo, h~.o) 

( f l  and f2 a r e  f u n c t i o n s  o f  hz0 and h20 ,  and t h e i r  e x p l i c i t  form i s  g i v e n  in  t h e  a p p e n d i x ) .  

For the solution of inhomogeneous system (ii) to exist, it is necessary that the func- 
tions fl and f2 satisfy certain solvability conditions [2]. These conditions in turn depend 
on the solutions of (ii) and the corresponding homogeneous system (9) that are being exam- 
ined. We will henceforth be interested only in steady traveling waves in a first approxima- 
tion (i.e., dependent on the variables x and ~i in combination with $i or $2), periodic 
waves, or isolated waves. In this case, the condition of solvability of system (ii) re- 
quires that fl and f2 satisfy the relation 

bd~ - -  (a~ : -  c~)l~ = O. 

E x c l u d i n g  H2i f rom ( 1 2 ) ,  we can use  a r e l a t i o n  which  f o l l o w s  f rom (9)  f o r  a s t e a d y  
traveling wave 

(12)  

b 1 H l i  (13) 

to arrive at a single equation for H1i: 

OH1 i AIt l  ~ ~ O~Hli 04Hli 
-~2 + O~i + Re B + We N-7~-4 = 0. 

The coefficients A, ReB, WeN are given in the appendix. 

(14) 

Using the substitution 

~ = (We IN l/Re IB I)V% H,~ = H(Re IB IP/2/(A (We IN I)~/'), 

% = "eWe IN I/(Re IB I) 2 
(is) 

218 



we change Eq. (14) to the form 

0~ 0H B 02H ~'04H 0--T + H ~ + s g n  - - +  0, (16) 0~ 2 sgn iV ~ = 

i . e . ,  depending on the  s igns  of  the  c o e f f i c i e n t s ,  we a c t u a l l y  have four  d i f f e r e n t  e q u a t i o n s :  

aH OH . 02H + 04H 0; (17) 
o-? + H ~ + ~  o-- ~= 
OH OH 02~ . 64H 

+ g 0~ 0~ + ~ = 0; (18) 

OH OH 02H 04H O; (19) 
o-~+H-bT~ q 0~2 o~ a = 

o~ o~ o=H o ~  O. (20) 
0-7+ H o~ o~2 0~4 

Equat ion  (17) i s  o f t e n  encoun te red  in the  modeling of  the  n o n l i n e a r  behav io r  of  d i s t u r -  
bances  in active media. In particular, for Re ~ 1 this equation is obtained in examining 
waves on the surface of one freely-flowing liquid film [i]. For such a flow, the signs of 
the coefficients A, B, and N depend on the specific values of the parameters v, o, p, and h 
and on which of the two steady (in the first approximation) waves are being examined. Also, 
as is clear from (15), in all four cases H1i ~ -H if A < 0. 

If Eq. (17) is known to have periodic and soliton solutions in the form of steady trav- 
eling waves (see [i, 3-6] for example), H = H($ - c~), then (18) and (19) have no such solu- 
tions. In fact, it is easily shown that the following relation is valid for any solution of 
Eq. (16) which is periodic with respect to $ (with the wavelength I) 

2o o - =  "[W)  or7 ] " 
(21) 

Since the left side of Eq. (21) is equal to zero for a steady traveling wave, then it is 
clear that this equation can be satisfied for Eqs. (18) and (19) only if H = 0. 

It follows from (21) that any solution of Eq. (18) which is periodic with respect to 
will decay with time, while the analogous solution for (19) will increase without limit. 

Equation (20) is formally equivalent to (16), since it is reduced to it by means of the 
substitution 

�9 -+--~, H-+--H. (22) 

Thus, (20) also has solutions in the form of steady traveling waves. However, if such peri- 
odic solutions of Eq. (17) include solutions which (as was shown in [i, 6], for example) are 
stable against all infinitesimal plane perturbations and if only one or two of the modes are 
increasing for many of the unstable solutions, then all of the steady traveling solutions 
of Eq. (20) will be highly unstable. As is clear from (22), all or nearly all such distur- 
bances will be increasing (all of them will be if the solutions of Eq. (17) for the corre- 
sponding wave numbers are stable). 

It is clear from the above that initial flow (i) is most stable against small but finite 
two-dimensional disturbances when it has parameters at which the coefficients A, B, and N 
for either of the steady traveling solutions of system (9) are such that (14) reduces to Eq. 
(18) for these coefficients. In this case, disturbances decay over time. 

If the description of the evolution of only one of the waves (13) reduces to (18) and 
if Eq. (17) exists for the other wave, then a fairly well-developed wave pattern will be 
seen at the interfaces. 

If Eq. (14) can be reduced to even one of the waves (13), then the wave pattern will 
be highly unstable. Thus, the initial flow (I) will also be highly unstable. 
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The situation will be most unstable if the parameters of the flow (i) are such that we 
arrive at Eq. (19) for one of the waves (13). In this case, disturbances quickly grow to 
amplitudes at which the present approximation is rendered invalid. 

The above conclusions were not arrived at in rigorous fashion, being based on the analy- 
sis only of a certain class of disturbances - those which satisfy Eq. (13). To study the 
stability of flow (i) relative to all possible two-dimensional disturbances, it will be ne- 
cessary to take the general solution of system (9) and derive the corresponding system of 
the second approximation for it from (ii). Such an attempt is beyond the scope of the pres- 
ent work. 

Despite the limited nature of the approach that has been taken here, the results which 
follow from the analysis of Eq. (14) can be used at least as estimates. 

In the study of the combined flow of films of specific liquids, the coefficients in (14) 
will be functions only of their relative thickness. Thus, by appropriately selecting the 
thicknesses of these films, we can control their flow regimes within certain limits. 

Thus, for example, calculations show that in the case of a water-benzene system, Eq. 
(14) reduces to (20) for one of the waves (13) at all values of h from the range [0.5 ~ h < 
5]. Equation (17) exists for the second wave at 0.5 ~ h ~ 3.5, while at h > 3.5 Eq. (14) 
reduces to (18). With allowance for the above stipulations, it can be expected that such a 
two-layer film will be more stable against disturbances in the second case than in the first 
case. 

A benzene-water film serves as the opposite example. With values of relative thickness 
h ~ 2.8, the evolution of one of the waves is described by Eq. (19), i.e., in this case non- 
linear effects do not keep disturbances from growing and such a film will evidently be quick- 
ly destroyed. 

If the first film is olive oil and the second is water, then Eq. (18) is valid for one 
of the waves for all h from the investigated range and Eq. (17) is valid for the other wave. 
Here, A < 0 for the last wave on the interval [0.5 ~ h ~ i.I]. It is not hard to show that 
unusual wave profiles may exist at the interface between the films. 

In fact, as is known from [3, 5, 6], Eq. (17) has families of periodic steady traveling 
solutions which pass to the limit as the wave number ~ approaches zero in soliton solutions. 
For these solitons, [Hmin[ > IHmax[, so they can be referred to as soliton-depressions [6]. 
Their leading edge is monotonic, while decaying oscillations exist on the trailing edge. 
Since A < 0 for the investigated thicknesses, then it follows from (14), (17), and (15) that 
when the wave number ~ is small enough, it is possible to have periodic regimes in which the 
profiles have the form of a sequence of steady traveling "positive" soliton-elevations. The 
latter will have a monotonic leading edge and an oscillating trailing edge. This situation 
is opposite that seen for a freely-flowing single film, where such profiles are in principle 
impossible due to the positiveness of all of the coefficients of initial equation (14). In 
this case, the oscillations for the "positive" solitons will always occur on the leading 
edge [3, 5, 6]. 

We thank Academician V. E. Nakoryakov for formulating the problem examined here. 

APPENDIX 

r~ = a [(t - -  9) hlo + h2o/V], r2 = ah2olV, 

r3 = a [(O ( h  - -  2)  + t - ( t  - -  h) /~ , )  h~o + ( ~  - -  l )  h~o/'J],  

t [ tTr3 a ~h I "1 
= T + v (  - - l '  

8h I o Oh j 0 o O2h 10 
_ _  _ _  h l o  ~ + ~ + D1 1 1 =  oz 2 + a l p ( 3  h) 2] n a'h~o 

- 1 0 x  2 OX 0T 1 

aWe e)4h 1 o ~x Ozh 02h~o aWec~ O4h~o 
3 O.rY pa (hzoh2o) + 7). 20 _{_ D~ 2 ( 3 h -  i )  

~ 12  oxz cTx i~; 6 Ode4 ' 

Oh2~ 2a Oh2o OZh,, o 02h2o 04h2o 
]2----  oT 2 +--q[t--h--p~]h2o~ + B 2 ~ + 0 2 ~ W N 2 ~ - 4 -  

Ohlo aWeq (3h 1) 0%~~ R OZh~o 
a 0 (hlohzo) + 2 a ( p  _ l ) h ~  ~ 7x 6 Oz4 ~ Ox 2 - + ~- [2 (h - -  t)  (~t - -  i )  + v - -  u] ~ - -  ~ +  - - - k D . x - -  

02h~o 
Ox O~ ' 
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B~ = R~ .~ (3 < ~  ~____J) (~ + ,o (h - -  t)) + ,___one [(~ (h - -  2) + i + ~ - -  h) • 

3 
X [ 3 ( h - -  1) ( v - -  I + 2 ( h - -  1 ) ( 1 - -  ~t)) + h 3 -  I] + - ~ ( 9 ( 2 h - -  3) + v + 2 ( 1 - -  h)) (l - -  h)~]t, 

a[5(~-'~ 1-h ] 
D ~ = R e  [ ~ + ~ ( 9 ( h - - 2 ) + v +  l - - h )  , 

B!~ = lie a2~{~(I + p(h-- I)) + ~ [(~-- I + 2(h-- I)(I - 9)) (h- I) • 

X (h - -  t + 29)/8 + (h 3 - -  t)  (h + 9 - -  t)/12 - -  (9 - -  t)  (h - -  l)~18J}, 

aWe~ h2 N 2 = ~ ((t -- 39) + (6h ~ -- 9h + 2)(1---  9)), 

B o = R e a  s , 9 ( t  + p ( h - -  l)) - -  + ~ [ ( v - -  

• ($1 + (9  - -  1) $3) + 2 h S  2 + (9  - -  1)($1 + (2 - -  h) Sa)]}, 

D 2 = R e a  p 2-4 3 + ($I  + S s ( 9 - t ) ) / v 2 ,  

{ (~ 1 ) +  i - - - [ [ ( ~ , - - t + 2 ( h - - l ) •  B ~  = Re a 2 (1 - -  ~) (l  + ~ (h - -  l)) T - -  ~ 2 r  

X ( t - - 9 ) ) S 3 + 2 S 2 ] ( 9 ( h - - 2 ) + v + t - - h ) - - ( h S  3 - S ~ ) ( 9 ( 3 - 2 h ) -  v - -  2 (l - -  h))]}, 

D2~ = llea((524 h - -  l") (l - -  P) + ~ ( 9 ( h - 2 ) + v + - 3  t - - h ) S ~ }  

24 + 9 - - 7 - -  + ------7---  + (t - -  h) 9 ~ - -  ~ + 2 7'  

s~ ~ - ; 2  h ~ - ~  (h 2 - 1 )  h ~ ( l - h  ~ 1 ~ 
t20 + 9 ~ +  12 + ( i - - h )  9 2 24 + 6 ] '  

_ 

P =- (2c~ - -  al  - -  a~)/(a~ - -  c~), P I  = (ci - -  a~)/(c~ - -  ao), 

A = {p(3 - -  h) - -  2(aa - -  c~)(p - -  l)/b~ - -  2p(c~ - -  a~)lb~ - -  2 + 2P~ • 

• (2(h - -  t)(,a - -  t )  + v - -  9 + (c~ - -  a~)(l - -  h - -  Vt))/ '~}a/P, 

R e B  ---- {B~ - -  c~D~ + (B~: - -  c i D i o . ) ( c  ~ - -  a~)/b~ + P~(B~ - -  c~D2) 

- - (a~  - -  c~) (B~  - -  c~D~) /b~} /P ,  

W e N  = - -{aWe(2  + o(3h - -  t)(ci - -  a~) ( l /b l  + 1/b~))/6 - -  P I N ~ } / P .  
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